NAME:

Summer 2019 Math 351 Exam 2

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

- 1. True, False, or incoherent

 a) All complex-valued sequences with a finite range are convergent sequences.
 [2 pts]

 b) Let {s_n} and {t_n} be complex-valued sequences such that lim_{n→∞}(s_n + t_n)

 = L. Then {s_n} and {t_n} must be convergent sequences.
 [2 pts]

 c) For any sequence of real numbers {a_n}, the inequality lim inf a_n ≤ lim sup a_n always holds.
 [2 pts]
 - d) There exists a sequence of real numbers $\{a_n\}$, for which $T_n = \sup \{a_k : k \ge n\}$ is a strictly increasing sequence. [2 pts]

e) Given a sequence $\{a_n\}$ in an arbitrary metric space (M, d), we can always compute limit supremum and limit infimum. [2 pts]

2. True, False, or incoherent

a) Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. If the root test gives no information, then it is useless to try the ratio test. [2 pts]

b) Suppose that $\sum_{n=1}^{\infty} a_n$ is a real-valued series such that for every $\varepsilon > 0$, there is an integer N, for which $\sum_{n=N}^{\infty} a_n < \varepsilon$. Then we may conclude that the series converges. [2 pts]

c) Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. If the ratio test gives no information, then it is useless to try the root test. [2 pts]

d) A series of non-negative real numbers
$$\sum_{n=1}^{\infty} a_n$$
 converges if and only if
the series $\sum_{k=1}^{\infty} 2^k a_{2^k}$ converges. [2 pts]
e) The series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + ... +$ converges to 2. [2 pts]
True, False, or incoherent
a) The Cantor function is decreasing. [2 pts]

3.

b) A discrete metric space does not have any nowhere dense subsets. [2 pts]

d) The compliment of a nowhere dense set is dense. [2 pts]

e) In any metric space, every nonempty perfect set is infinite. [2 pts]

- 4. True, False, or incoherent a) Let $\{x_n\}$ be a sequence of real numbers and $\{\varepsilon_n\}$ be a corresponding sequence of positive numbers such that $\sum_{n=1}^{\infty} \varepsilon_n < \infty$. Then the function *f* defined by $f(x) = \sum_{x_n \ge x} \varepsilon_n$ is increasing. [2 pts]
 - b) The function $f(x) = x^2$ is continuous. [Hint: be careful!] [2 pts]

c) If $f(x_n) \to f(x)$ for every continuous function $f: (M, d) \to \mathbb{R}$, then it must be the case that $x_n \to x$. [2 pts]

d) If $f: (M, d) \rightarrow (N, p)$ is invertible with a continuous inverse f^{-1} , then for any open subset of M, V, f(V) must be an open subset of N. [2 pts]

e) Let $X_{\Delta}: \mathbf{R} \to \mathbf{R}$ be the characteristic function of the Cantor set. Then X_{Δ} is discontinuous at every point of the Cantor set. [2 pts]

5. True, False, or incoherent a) Let $f: (M, d) \rightarrow (N, p)$ be a function and suppose that V is a subset of N that contains a neighborhood of f(x). If $[f^{-1}(V)]^{\circ} = \emptyset$, then f is **not** continuous at x. [2 pts]

b) Let M be a discrete metric space. Then any function $f: M \rightarrow \mathbf{R}$ is continuous. [2 pts]

c) Let d and p be equivalent metrics. Then the set of real-valued continuous functions on (M, d) is equivalent to the set of real-valued continuous functions on (M, p). [2 pts]

d) For any metric space (M, d), there exists some function $f: (M, d) \rightarrow \mathbf{R}$ such that for any real number a, the sets $\{x: f(x) > a\}$ and $\{x: f(x) < a\}$ are open, but the function is **not** continuous. [2 pts]

e) Suppose that $M = A \cup B$, where $A \cap B = \emptyset$. If $f: (A, d) \to \mathbb{R}$ and $f: (B, d) \to \mathbb{R}$ are continuous, then $f: (M, d) \to \mathbb{R}$ must be continuous. [2 pts]

6. True, False, or incoherent

a) The empty set ϕ is connected. [2 pts]

b) Let ϑ be a collection of connected sets. Then $\cap \vartheta$ is necessarily connected. [2 pts]

c) If A is connected in (M, d), then \overline{A} is connected in (M, d). [2 pts]

d) If \overline{A} is connected in (*M*, *d*), then A is connected in (*M*, *d*). [2 pts]

e) Suppose that for any continuous function $f : M \to \mathbf{R}$, f(M) is a connected subset of **R**. Then *M* is necessarily connected. [2 pts]

7. Construct a real-valued sequence $\{a_n\}$ such that $\limsup a_n = 5$, while $\limsup a_n = -1$. Can such a sequence converge? [10 pts]

8. Let $f:[0, 1] \rightarrow R$ be defined by $f(x) = \begin{cases} 2x-1 & \text{if } x \notin Q \\ x^2 & \text{if } x \in Q \end{cases}$. Determine the points at which f is continuous. [10 pts]

9. Prove that the set $\{(x, y): x^3 \ge y^5\}$ is closed as a subset of \mathbb{R}^2 . [10 pts]

10. Suppose that *a* is an isolated point of (M, d). Prove or disprove: There exists a function $f: (M, d) \rightarrow \mathbf{R}$ that is **not** continuous at the point *a*. [10 pts]

11. Let θ be an irrational number and define $f \colon \mathbb{R} \to [0, 1)$ by f(x) = x - [x], where [x] is the greatest integer function. (In other words f(x) is the fractional part of x. For example $f(3.1415 \dots) = 0.1415 \dots$). Show that $D = \{f(n \theta) \colon n \in \mathbb{N}\}$ is a dense subset of [0, 1]. [10 pts]

12. Let $\{x_n\}$ be a sequence of real numbers defined by

$$x_{n} = \begin{cases} \frac{1}{2k} & \text{if } n = 2k - 1\\ \frac{1}{2k - 1} & \text{if } n = 2k \end{cases} \text{ where } k \ge 1 \text{ and therefore } n \ge 1. \text{ Set} \\ \varepsilon_{n} = \left(\frac{1}{2}\right)^{n} \text{ and define } f : R \to R \text{ by} \\ f(x) = \sum_{\substack{n : x_{n} < x}} \varepsilon_{n} \end{cases}$$

(a) Compute
$$f(0)$$
, $f(-1)$, $f(1)$, $f(\sqrt{2})$, and $f(1/2)$. [4 pts]

(b) Determine the set of discontinuities, D(*f*) , for the function. Justify your claim. [6 pts]